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Abstract: We investigated geographically far but temporally correlated China’s and US agricultural 

futures markets. We found that there exists a power-law cross-correlation between them, and that 

multifractal features are significant in all the markets. It is very interesting that the geographically far 

markets show strong cross-correlations and share much of  their multifractal structure. Furthermore, we 

found that for all the agricultural futures markets in our studies, the cross-correlation exponent is less 

than the averaged generalized Hurst exponents (GHE) when  and greater than the averaged 

GHE when . 
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1 Introduction 

It is a great challenge for econophysicists to identify the underlying patterns of  spatial and 

temporal complexities in social and economic systems. In current literature, few results could be 

found to incorporate geographically far but temporally correlated economic or financial systems and 

treat them as one system with interacted components. For example, although many scientists 

attempted to uncover the patterns and their formation mechanisms in China’s and/or US agricultural 

futures markets, they failed to realize that many of  the markets are actually geographically and/or 

temporally correlated, so that they merely discussed these markets separately instead of  treating them 

as interacting subsystems in one integrated global or regional market. 

Empirical evidence supports the existence of  fractals or multifractals in either China’s or US 

agricultural futures markets. For instances, Corazza et al. studied six main US agricultural futures 

markets and found the existence of  fractals [1]; Chatrath et al. studied four futures markets as the 

representatives of  US agricultural futures market and found low-dimensional chaotic structures [2]; 

similar results show that China’s agricultural futures market is also multifractal [3, 4]. Therefore, a 

single fractal dimension can not explain the scaling geometry of  the market patterns, which may be 

better described by a spectrum of  scaling exponents. Although empirical studies are found, the 

previous researches analyzed market dynamics separately then simply compared the phenomena 

obtained from the isolated analyses, ignorance of  the complex cross-correlations between those 

geographically and temporally correlated markets. 

Many scholars have studied the cross-correlation among financial time series, such as stocks [5-9] 

and currencies [5], using the methods which assume that both of  analyzed time series are stationary. 

But unfortunately, in the real world, especially in the case of  economic and financial markets, the time 

series are usually nonstationary; therefore, the approaches in current literature may lead to a spurious 

detection of  auto- and cross-correlation. Therefore, many scientists incorporated the temporal 

and/or spatial factors and applied Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) to 

investigate the cross-correlation between two signals, which may successfully overcome this limitation 

in current literature. For example, Jun et al. proposed a detrended cross-correlation approach to 
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quantify the correlations between positive and negative fluctuations in a single time series [6]. Based 

on the previous studies, Podobnik and Stanley proposed Detrended Cross-Correlation Analysis 

(DCCA) to investigate power-law cross-correlations between two simultaneously recorded time series 

in the presence of  nonstationarity [7]. Podobnik et al. then applied their new method to uncover 

long-range power-law cross-correlations in the random part of  the underlying stochastic process [8] 

and the cross-correlation between volume change and price change [9]. To unveil multifractal features 

of  two cross-correlated nonstationary signals, Zhou proposed Multifractal Detrended 

Cross-Correlation Analysis (MF-DCCA) to combine Multifractal Detrended Fluctuation Analysis 

(MF-DFA) and DCCA approaches [10]. 

In this paper, we applied MF-DCCA to analyze the geographically correlated agricultural 

commodity markets, i.e. hard winter wheat, soy meal, soybean and corn, in China and US. We arrive at 

the following nontrivial conclusions: firstly, there exists a power-law cross-correlation between these 

futures markets; secondly, all of  cross-correlation relationships are also found to be multifractal; 

thirdly, the relationships are investigated between cross-correlation exponent and the generalized 

Hurst exponent in single markets; finally, the price change of  integrated soy meal market is a random 

walk process than those of  single markets both in China and US. 

2 Method 

Let us briefly introduce MF-DCCA method [10, 11]. Suppose that there are two time series x(i) 

and y(i) (i = 1; 2; ¢ ¢ ¢ ; L), where L is the length of  series. For each series, we calculated the 

absolute logarithmic returns: 
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where ¢t = 1. Then the “profile” is determined: 
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We divided the entire series into Ns = N ¡ s + 1 over-lapping boxes with the length of  s. And 

then for each of  the Ns segments the local trends are estimated by means of  the mth order 

polynomial fit. Then the detrended covariance is given by 
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where ~Xv(k) and ~Yv(k) are the fitting polynomials in segment v respectively. Definitely our 

definition is different from those in other references1. And then the qth order is defined as 
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When q=0, the limit of  Eq.(4) can be given by 

                                                             
1
 In reference [10] the detrended covariance is given by Eq.(3). But we found that in our results ln Fxy(q; s) is 

nonlinear when q is negative. Zhou also pointed out in reference [14] that for negative q values, no obvious 
power-law scaling can be identified for the daily closing prices of  DJIA and NASDAQ indexes. Therefore, in this 
paper, Eq.(3) is defined as a variation of  the detrended variance in MF-DFA, that is, 

F 2
v (s) = 1

s

Ps

k=1

³

Xv(k) ¡ ~Xv(k)
´

2

= 1

s

Ps

k=1

¯

¯

¯Xv(k) ¡ ~Xv(k)
¯

¯

¯

2

. 



 3 
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If  power-law cross-correlations do exist, the scaling or power-law relationship should satisfy 

Fxy(q; s) / shxy(q)                                                        (6) 

The cross-correlation exponent hxy(q) in Eq.(6) can describe the power-law relationship between 

two temporally correlated time series. Especially, if  the time series x is identical to y, MF-DCCA is 

equivalent to MF-DFA; and if  the q = 2, the cross-correlation exponent hxy(2) is equivalent to the 

well-known Hurst exponent h(2). According to Shadkhoo and Jafari [11], the similar relationship 

between classical multifractal scaling exponents ¿xy(q) and q can be given by 

¿xy(q) = qhxy(q) ¡ 1   (7) 

If  ¿xy(q) is linear with q, the cross-correlation of  the correlated series is monofractal; otherwise, it 

is multifractal. By the means of  a Legendre transformation, we can obtain the following relationships 

® = hxy(q) + qh
0

xy(q); fxy(®) = q(® ¡ hxy(q)) + 1 (8) 

The strength of  multifractality thereby can be estimated by the width of  multifractal spectrum [3], 

which is given by
  

¢® = ®max ¡ ®min  (9) 

3  Data Analyses and Discussions 

3.1 Data 

The data used in this paper are the daily closing prices of  China’s and US representative 

commodity futures markets (data source: Reuter© Database), that is, hard winter wheat futures prices 

from Dec. 28th, 1993 to Jun. 3rd, 2010 (L = 3334) from China’s Zhengzhou Commodity Exchange, 

and soy meal futures prices from Jul. 17th, 2000 to Jun. 3rd, 2010 (L = 2369), No. 1 soybean futures 

market from Mar. 15th, 2002 to Jun. 3rd, 2010 (L = 1981), corn futures market from Sep. 22nd, 

2004 to Jun. 3rd, 2010 (L = 1382) from China’s Dalian Commodity Exchange. Meanwhile, same 

length of  daily closing prices of  wheat futures market (L = 3334), soy meal futures market 

(L = 2369), soybean futures market (L = 1981) and corn futures market (L = 1382) are also 

chosen from Chicago Board of  Trade (CBOT) within the similar time span.  

To better describe the time series, the integrated profiles I(n) =
PL¡¢t

i=1
(jR(i)j ¡ hjRji) are 

illustrated in Fig. 1. In our calculation, the order q ranges from ¡5¡5 to 55 with step 0:10:1, scale ss 

ranges from 10 to 
£

L¡¢t
10

¤

, polynomial order  and all of  the boxes are overlapped. 

All our programming and calculations are performed in Matlab©. 
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Figure 1. The integrated profiles of  the absolute logarithmic returns for both of  China’s and US agricultural futures 

markets ((a) hard winter wheat, (b) soy meal, (c) soybean and (d) corn futures markets) 

 

3.2 Results and Discussions 
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Figure 2. The linear relationship between  and  for China’s and US futures markets when polynomial 

order  ((a) hard winter wheat, (b) soy meal, (c) soybean and (d) corn futures markets) 



 5 

 

By means of  above-mentioned method, we intend to (i) identify whether there exists a 

multifractal scaling law in the markets; and (ii) quantify the multifractal strengths of  the systems (if  

any). If  multifractality does exist, it may help us identify, explain and control the underlying physical 

mechanisms that dominate and govern the market dynamics; thus, it would greatly deepen our 

understanding of  market macro phenomena [12]. 

Fig. 2 shows the log-log plot of   versus lns between China’s and US futures 

markets when polynomial order  (when  and , the results are qualitatively similar). 

For different , all of  the curves are linear, which suggests that there exist power-law 

cross-correlations in each pairs of  futures markets. For example, China’s Wheat is power-law 

cross-correlated with US Wheat (see Fig. 2 (a)). The power-law cross-correlation relationship indicates 

that a large increment of  price change in a futures market may be more likely to be followed by a large 

increment of  price change in the other geographically or temporally correlated futures market. 

In Fig. 3 the relationship is displayed between cross-correlation exponent  and  (black 

curves). To make a comparison, we also estimated the generalized Hurst Exponent  of  each 

separate analyzed futures market by means of  MF-DFA (red curves stand for China’s markets, and 

green curves represent US markets in Fig. 3). If  exponent  is a constant, the market is monofractal, 

otherwise it is multifractal. From this plot we can find that the relationships are multifractal because 

for different q, there are different exponents ; that is, for different , there are different power-law 

cross-correlations. 

We obtained the cross-correlation exponents and generalized Hurst exponents when  

(see Table 2). As we know, Hurst exponent describes the persistence of  auto-correlation in a 

separately analyzed time series. If  Hurst exponent , the system exhibits persistent 

properties; if  , it is anti-persistent. But for the cross-correlation exponent, it only 

describes the exponent of  power-law relationship when . Furthermore, Podobnik and Stanley 

found, both numerically [7] and analytically [8], that the cross-correlation exponent is equal to the 

average of  individual Hurst exponents for two fractionally autoregressive integrated moving average 

(ARFIMA) processes sharing the same random noise when . Zhou found that for two time 

series constructed by binomial measure from p-model, there exits the following relationship [10]: 

hxy(q) =
hxx(q) + hyy(q)

2
  (10) 

   We calculated the average of  generalized Hurst exponents (the pink curves in Fig. 3), which is an 

average of  separately analyzed China’s and US markets (the red curves and green curves in Fig. 3). In 

our results we found that for all of  the agricultural futures markets in our studies, the 

cross-correlation exponent is less than the averaged generalized Hurst exponents (GHE) when  

and greater than GHE when . 
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Figure 3. The results of   as a function of   between China’s and US agricultural futures markets when 

polynomial  ((a) hard winter wheat, (b) soy meal, (c) soybean and (d) corn futures markets). The red curves 

and green curves are obtained by MF-DFA, black curves are calculated by MF-DCCA and the pink curves are the 

average of  General Hurst Exponent  (China) and  (US). 

 

By means of  Eq. (7), the multifractal exponent  is estimated (see Table 1 and Fig. 4). In 

Table 1, the slopes of  tangents to the two tails of   are listed, from which one can obviously find 

that for all the markets, ¿¿  is nonlinearly dependent on , and this is another piece of  evidence of  

multifractality. 

 

Table 1 The slopes of  tangents to the two tails of   

    

      

China 1.1098 0.3218 1.1364 0.2444 1.1523 0.1566 

US 0.7689 0.4123 0.7008 0.3321 0.7086 0.3162 hard winter 

Cross 0.9221 0.4637 0.8891 0.4516 0.8818 0.4508 

China 0.8773 0.6134 0.9267 0.5759 0.9454 0.5210 

US 0.8170 0.5239 0.7379 0.4654 0.7828 0.4371 soy meal 

Cross 0.7763 0.6984 0.7002 0.6417 0.7264 0.6021 

China 1.0017 0.3210 0.9841 0.2038 1.0464 0.1934 

US 0.7186 0.4468 0.6816 0.4076 0.7236 0.4251 soybean 

Cross 0.7856 0.7596 0.7187 0.6084 0.7526 0.5481 

China 1.0168 0.4915 1.1602 0.4897 1.1665 0.4619 

US 1.2712 0.5387 1.1800 0.4256 1.1849 0.4315 corn 

Cross 0.9349 0.6486 1.0220 0.5318 0.9930 0.5025 
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Figure 4. The relationships between  and  between China’s and US agricultural futures markets when 

polynomial  ((a) hard winter wheat, (b) soy meal, (c) soybean and (d) corn futures markets). 
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Figure 5 shows the multifractal spectra between China’s and US agricultural futures markets when polynomial . 

Panels (a), (b), (c) and (d) illustrate relationships between  and  in hard winter wheat, soy meal, soybean and 

corn futures markets respectively. 
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Then all of  the slopes for different q and the multifractal spectra are estimated by means of  Eq. 

(8) and Eq. (9) (see Fig. 4). It is widely known that the multifractal spectrum of  monofractality is a 

point, namely, the width of  multifractal spectrum is zero if  the system under study is monofractal. 

Actually the width of  multifractal spectrum can be regarded as an estimate of  multifractal strength [3]. 

The numerical results of  the widths are listed in Table 1. Especially, for the soy meal, soy bean and 

corn futures markets, the widths of  cross-correlation multifractal spectra are narrower than those of  

separately analyzed China’s and US soy meal futures markets. The widths of  cross-correlation 

multifractal spectra for all markets are significantly nonzero, which imply that there are clear 

departures from random walk process for either separately analyzed (China’s and US) markets, or 

cross-correlated ones. 

 

Table 2 Hurst Exponents and Multifractal Spectra Widths ¢® 

 h(2) ¢® 

 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 

China 0.7285 0.6811 0.6590 0.7880 0.8920 0.9957 

US 0.6402 0.5924 0.5828 0.3566 0.3686 0.3924 hard winter 

Cross 0.7136 0.6785 0.6613 0.4585 0.4375 0.4310 

China 0.7147 0.6519 0.6329 0.2638 0.3508 0.4244 

US 0.6797 0.6361 0.6193 0.2931 0.2724 0.3457 soy meal 

Cross 0.7353 0.6718 0.6502 0.0779 0.0585 0.1244 

China 0.7006 0.6370 0.6214 0.6807 0.7803 0.8530 

US 0.6994 0.6164 0.5866 0.2718 0.2740 0.2985 soybean 

Cross 0.7506 0.6552 0.6235 0.0586 0.1103 0.2045 

China 0.7288 0.6864 0.6670 0.5253 0.6705 0.7046 

US 0.6712 0.5995 0.5916 0.7325 0.7544 0.7534 corn 

Cross 0.7419 0.6698 0.6552 0.2863 0.4902 0.4905 

 

4  Conclusions 

In this article, we applied MF-DCCA to investigate the cross-correlation of  agricultural futures 

markets in two geographically far but highly correlated economies, namely, China and USA. Our 

nontrivial empirical findings can be summarized as follows: 

First of  all, there exist power law cross-correlations in each pair of  futures markets between two 

countries, which suggests that a large increment of  price change in a futures market is more likely to 

be followed by a large increment of  price change in the other related futures market. 

Secondly, multifractality is significant in all the cross-correlation relationships of  agricultural 

futures markets in two economies. 

Thirdly, we found that for all of  the agricultural futures markets in our studies, the 

cross-correlation exponent is less than the averaged generalized Hurst exponents (GHE) when  

and greater than GHE when . 

Our results show that although geographically far, China’s and US agricultural futures markets show 

strong cross-correlations and share much of  similar multifractal structure. 
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